Diffraction @ STAR and Roman Pots

A. Bravar, BNL; S.R. Klein, LBNL; et al.

- what is diffraction ?
- central production (a central mystery !?)
- hard diffraction
- Roman Pot setup & trigger
- conclusions

What is Diffraction?

diffraction: shadow of inelastic interactions > 20% of $\sigma_{tot} \rightarrow$ huge rates

What is Diffraction?

- Diffraction = Rapidity Gap presumed to be caused by Pomeron exchange
- Pomeron: color-singlet combination of gluons and/or quarks with quantum number of the vacuum 0^+ ? (folklore) central production $\rightarrow 1^-$: non conserved vector current!?

Diffraction in $pp - 2 \mathbb{P}$ Exchange

$$\sigma(PP) \sim s^{0.08 - 0.16}$$

 $\sigma(PR) \sim s^{-0.5}$
 $\sigma(RR) \sim s^{-1}$

- ightarrow amplification of $\mathbb R$ exchange
- no baryon resonance contamination
- $\sigma(\mathbb{PP}) \sim 200 \; \mu b$ 0.4% of $\sigma_{tot} \rightarrow$ high rates
- d σ /dM \sim 1/M³ concentrated at lower masses

HADRONS - color singlets

conventional

baryons: $|qqq\rangle$, $|\overline{q}\overline{q}\overline{q}\rangle$

mesons: $|q\overline{q}\rangle$

exotica

```
multiquarks (clusters and molecules) : |qq\overline{q}\overline{q}\rangle, |qqqqqq\rangle, ... controversial, may not exist as resonances fall-apart decays allow direct coupling of |q\overline{q}\rangle \& |q\overline{q}\rangle without interactions
```

```
glueballs (excited glue): |gg\rangle, |ggg\rangle, ... maybe 1 known (f<sub>0</sub>(1500)) lattice QCD
```

```
hybrids (quarks + excited glue): |q\overline{q}g\rangle, |qqqg\rangle, ... maybe 2 – 3 known (\pi_1(1600)) exotic quantum numbers (i.e. forbidden to qq: 0<sup>--</sup>, 0<sup>+-</sup>, 1<sup>-+</sup>, 2<sup>+-</sup>, 3<sup>-+</sup>...)
```

Central Production


```
Central low mass system < 4-5 GeV
pp \rightarrow p (\pi^{+}\pi^{-}) p \text{ (simplest !)}
pp \rightarrow p (K^{+}K^{-}) p
pp \rightarrow p (\pi^{+}K^{0}_{S}K^{-}) p \text{ (exotic } 1^{-+})
.....

RICH structure (several resonances ...)
\Rightarrow \text{ ideal for hadron spectroscopy}
at lower p_{T} rich in gluons
```

Protons go down beam pipe \rightarrow detect (trigger & tag) with roman pots detection of scattered proton(s) will fix the event kinematics: momentum transfer t, azimuth, energy loss

 \Rightarrow glueball searches

interesting *t*:
$$0.05 < |t| < 1 \text{ GeV}^2$$
 $(0.25 < p_T < 1 \text{ GeV})$

of 4 Prong $(\pi^+\pi^-\pi^+\pi^-)$ Events

WA102 @ CERN

both scattered protons are measured!

A Central Mystery

QCD allows exotic states >

RHIC with polarized protons can search through central production

- The p_T filter and azimuthal dependences observed at the SPS remain compelling and unexplained: 0^+ vs 1^- Pomeron
- Suggestive of spin effects: spin effects seem likely
- It is likely that studies with polarized protons will shed new light on this phenomenon and might help to disentangle the different resonances

Specific Cross Sections & Rates

/ 1. \

Assuming	$\int \mathcal{L} dt \sim 1.2 \times 10^{36} \text{ cm}^{-2}$	i.e.	50% duty cycle 10% efficiency
			1 month run

Exita

 $\mathcal{L} = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$

		Final State	σ(μb)	# Evts.	_
		$pp(\pi^+\pi^-)$	79 ± 13	95 M	\leftarrow 1/3 of σ (PP) ?
$\sqrt{S} \sim 60$ $\frac{S}{S}$	pp $(2\pi^{+}2\pi^{-})$	46 ± 10	55 M		
	pp (K ⁺ K ⁻)	6.5 ± 1.7	7.8 M		
	$pp (K^+K^-\pi^+\pi^-)$	10.0 ± 3.3	12 M		
$\sqrt{S} \sim 30$ WA102	pp $f_0(980)$	5.7 ± 0.5	6.8 M	$\pi\pi$ decay	
	pp $f_0(1500)$	2.9 ± 0.3	3.5 M		
	W	pp $f_2(1270)$	3.3 ± 0.4	4.0 M	dominant
	pp f ₂ (1270) pp f ₂ (1950)	2.8 ± 0.2	3.4 M		

rates are huge: prescaling or very selective trigger search for more rare and exotic states

Einal Ctata

An intermediate case: charmonium χ_{c0}

 $\sigma(\chi_{c0})$ = 735 nb @ Tevatron guess ~ 73 nb for 500 GeV pp \rightarrow 730,000/10⁶ s at L = 10³² /cm²/s good rates for γ J/ Ψ , $\pi^+\pi^-\pi^+\pi^-$, etc.

Why Central Production with STAR?

interesting physics & novel effects

extension of UPC to pp

higher energy than previous experiments

- → smaller meson exchange contribution (no baryon resonances)
- → better isolation (larger rapidity gaps)
- → higher mass states (charmonia)
- → more exotic final states

polarized beams

- → spin might help disentangle mixing of various resonances
- \rightarrow spin might highlite G / $q\bar{q}$ dynamics

good acceptance for central production

Roman Pot Setup with Star Detector

- ❖ Roman Pots = Forward Proton Spectrometer
- Fully reconstruct the event kinematics & trigger on very forward protons
- Low impact on STAR detector

* can be used also as luminosity monitor multiplicity counter down to η =-6.5 very forward veto

Roman Pots

Roman Pots 2

silicon or scintillating fibers X & Y $\sim 60 \times 60 \text{ mm}^2$ $\sim 200 \ \mu \text{ resolution}$

Beam Transport Calculations

Central production

Signals in both Roman Pots AND UPC trigger
 (UPC trigger + Roman Pots veto → very low t)

Hard Diffraction

- Select final states with central detector
 high-p_T di-jets, high-p_T leptons, etc.
- Supplement (tag) with roman pots
 both roman pots → DPE
 only one pot → Single Diffraction
- Scale rates from central events → avoid trigger efficiency

Elastic Scattering

L. Trueman et al. predictions

pp2pp detailed program for pp elastic scattering including A_N , A_{NN} (spin) however no longitudinal polarization not too large t (i.e. $|t| > \text{few GeV}^2$)

If spin asymmetries as large as expected pp elastic scattering can be used as a local polarimeter (transverse spin)

for all RHIC experiments

 A_{LL} : not much known nor predicted If $A_{LL} \sim A_{NN}$ access also to longitudinal spin

Roman Pots can work at |t| as low as 0.05 GeV² under normal beam conditions, incl. $\beta^* \sim 1$ m

At $|t| = 0.15 \text{ GeV}^2$, $\sigma_{pp} > 10^{-28} \text{ cm}^2 \Rightarrow > 10^6 \text{ events / day (clean and simple process !)}$ $\rightarrow \Delta P / P \sim \Delta A / A < 10\%$ (systematics dominated, not statistics) $\rightarrow \text{ very efficient polarimeter for free !}$

 $A_{\rm NN}$

discovered by UA8 @ CERN

Single Diffraction

Large rapidity gap
1% of non-diffractive di-jets ×-section
high-p_T di-jets, leptons
charmonium (J/ψ), W, Z

Double Pomeron Exchange

(yet not directly observed) Central *high* mass system high- p_T di-jets, leptons charmonium (J/ψ)

NB: Hard Diff. means: large p_T of jets, not large |t|

Why Hard Diffraction?

it gives insight into the strong force

- \Rightarrow Soft \Leftrightarrow Hard regimes coexists
 - → transition from perturbative to non–perturbative QCD and unifications of the soft and hard aspects of the strong force
 - → confinement and hadron structure
- ⇒ Pomeron Structure & Coupling
- ⇒ Diffractive Structure Functions
 - → universality
 - → Pomeron hadronic characteristics: gluon and quark content
- ⇒ factorization

UA8 ×-sect enhancement, exceeds factorization by 1 order of magnitude

- ⇒ large rapidity gap survival probability
- ⇒ topology final state: nature of Pomeron exchange

Why (Hard) Diffraction with STAR?

high rates

- → need more experimental data (Tevatron still poor statistics)
- \rightarrow observe directly 2 \mathbb{P} exchange

W prodcution

 \rightarrow compare pp to $p\bar{p}$

intermediate energy ($\sqrt{s} = 200 - 500 \text{ GeV}$)

→ study transition from soft to hard diffraction

polarized beams offers a new window into diffraction

conclusive experiment still missing

hope it can be STAR

pA (not discussed today)

 \rightarrow access the gluon distribution at small x

γγ with pp

$\gamma\gamma$ Luminosity at RHIC

G. Baur et al, hep-ph/0112211

- With 500 GeV pp,RHIC has higher $\gamma\gamma$ energy than LEP
- Rates are substantial
 - opportunity or background?
- $ightharpoonup \gamma \gamma$ and \mathbb{PP} have different p_T spectra

however

proton p_T^2 too small (< 0.05 GeV²) to select $\gamma\gamma$ with Roman pots but can veto with Roman pots!

Next Steps

- develop further the Physics Case
- montecarlo studies of STAR acceptance
- beamline studies
- Roman pot setup and detectors
- form a group (STAR + new collaborators)
- proposal to STAR this fall